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Abstract

We present a geometric approach for calculating integrals over irregular domains described by a level-set function. This
procedure can be used to evaluate integrals over a lower dimensional interface and may be used to evaluate the contribu-
tion of singular source terms. This approach produces results that are second-order accurate and robust to the perturba-
tion of the interface location on the grid. Moreover, since we use a cell-wise approach, this procedure can be easily
extended to quadtree and octree grids. We demonstrate the second-order accuracy and the robustness of the method in
two and three spatial dimensions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Integration over interfaces and irregular domains defined by a level-set function / is traditionally computed
using regularized one-dimensional Dirac delta or Heaviside functions [12,11]: Consider a domain X � Rn and
a lower dimensional interface C separating two disjoints subdomains X� and Xþ. A level-set function / can be
used to represent C as the set of points x such that /ðxÞ ¼ 0, X� by /ðxÞ 6 0 and Xþ by /ðxÞ > 0. The integral
of a function f on C and the integral of f over the subdomain X� can be calculated as:
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f dC ¼
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f ðxÞ � dð/ðxÞÞ � kr/k dx; ð1ÞZ

X�
f dX ¼

Z
Rn

f ðxÞ � ½1� Hð/ðxÞÞ� dx; ð2Þ
where d and H are approximations of the delta and Heaviside functions, respectively.
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However, rather recently, Engquist et al. [2] pointed out that the above approach using standard delta for-
mulations may lead to non-convergent approximations. The authors then presented a discretization of the
Dirac delta function that removes the problem of convergence. Later, Smereka [17] proposed first- and sec-
ond-order accurate discretizations of the regularized delta function using the work of Mayo [7]. Regularized
delta functions serve not only in the evaluation of integrals over a lower dimensional surface, but also in the
direct discretization of singular source terms, for example the surface tension force between two materials. The
work of Engquist et al. [2] and Smereka [17] can therefore be used to directly evaluate singular source terms.
However, singular forces can also be computed using integration over lower dimensional surfaces. In the case
of the two-phase flow example, the force due to surface tension only exists at the interface between the two
phases. In this case, the computation of the singular source term at a grid node adjacent to the interface
can be approximated by the integral over the interface in the control volume element centered at the grid node.
Computing integrals over lower dimensional surfaces is therefore an important task for evaluating integrals or
for evaluating the contribution of singular source terms.

In this paper, we present a geometric approach for calculating integrals such as (1) and (2). This approach
produces results that are second-order accurate and independent of the interface location on the grid. We dis-
cretize the interface into a disjoint union of simplices [1,8] and then use a numerical integration quadrature
rule on simplices [4]. This direct discretization of the interface using tools from computational geometry pro-
duces theoretically sound and numerically efficient algorithms. We also compare the results obtained with this
method to those obtained with the delta formulation of [17] and find that a geometric approach is less sensitive
to small perturbations of the interface location.

2. Numerical integration

In this section, we present a numerical integration over the interface C ¼ fx 2 Rnj/ðxÞ ¼ 0g and the irreg-
ular domain X� ¼ fx 2 Rnj/ðxÞ 6 0g of a continuous function / : Rn ! R. Although this algorithm can be
easily extended to higher dimensions, we focus on the two- and three-dimensional cases.

2.1. Triangulation of a grid cell

The approach we choose is to decompose grid cells crossed by the interface into a union of simplices, for
which integration is straightforward. A simplex, or n-simplex is the convex hull of a set of ðnþ 1Þ affinely inde-
pendent points, i.e. a triangle in two spatial dimensions and a tetrahedron in three spatial dimensions. The
affinely independent points are called the vertices of the simplex, and the dimension of the simplex S is n,
and denoted by dimðSÞ.

Simplices provides a straightforward way to compute lengths, areas and volumes. Consequently, there have
been thorough studies to decompose geometric shapes into simplices for many applications, for example mesh-
ing in finite elements [3]. In two spatial dimensions a grid cell can be decomposed into two triangles, as shown
in Fig. 1. In three spatial dimensions a grid cell can be decomposed into five tetrahedra (called the middle cut
triangulation [14]) or into six tetrahedra (called the Kuhn triangulation [6]). The Kuhn triangulation can be
more easily extended to higher dimensions [8] and is more convenient to match triangulations between
Fig. 1. Triangulation of a two- (left) and three- (right) dimensional cell.
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adjacent cells. On the other hand, the angles of the tetrahedra created by the middle cut triangulation are less
acute than those of the Kuhn triangulation and the smaller number of tetrahedra leads to faster computations.
In this work, we choose the middle cut triangulation since we limit ourselves to two and three spatial dimen-
sional cases and because integrations can be computed cell-wise, with no interactions between adjacent cells.

Cartesian cells can be mapped onto the unit cells, so with no loss of generality, we present the middle cut
triangulation on the unit cells in two and three spatial dimensions as illustrated in Fig. 1:
½0; 1�2 ¼ convðP 00; P 10; P 11Þ [ convðP 00; P 01; P 11Þ

and
½0; 1�3 ¼ convðP 000; P 100; P 010; P 001Þ [ convðP 110; P 100; P 010; P 111Þ [ convðP 101; P 100; P 111; P 001Þ
[ convðP 011; P 111; P 010; P 001Þ [ convðP 111; P 100; P 010; P 001Þ;
where convðP 1; . . . ; P nÞ is the convex hull span by the points P 1; . . . ; P n and defines a simplex. We denote by
T ðCÞ the triangulation of a cell C, i.e. C is a disjoint union of simplices in T ðCÞ:
C ¼
[

S2T ðcÞ
S:
Note that the triangulations do not create new vertices, thus a discrete function sampled on a uniform grid is
well defined on the vertices of each simplex. Then the integrations are calculated simplex-wise as:
Z

C
f dC ¼

X
C:grid cell

Z
C\C

f dC ¼
X

C:grid cell

X
S2T ðCÞ

Z
S\C

f dC;

Z
X�

f dX ¼
X

C:grid cell

Z
C\X�

f dX ¼
X

C:grid cell

X
S2T ðCÞ

Z
S\X�

f dX:
The integrations are then reduced to
R

S\C f dC and
R

S\X� f dX for each simplex S, which necessitate a discret-
ization of S \ C and S \ X�.

2.2. Discretization of S \ C and S \ X�

In general, S \ C and S \ X� are continuous manifolds possibly with some singularities (sharp corners or
sharp edges). For simpler calculations, we approximate the sets with the linear interpolation of /, using the /
values on the vertices of the simplex S, as in [8]. Then, S \ C and S \ X� are defined by polytopes, i.e. convex
hulls of finite points. This allows for efficient representation, since only a finite number of points need to be
stored. Specifically, we first approximate the location of the set C on each edge of S: Let fP 0; . . . ; P ng be the
vertices of S, if C crosses the edge P iP j, i.e. /ðP iÞ/ðP jÞ < 0, we define the intersection point Pij between C and
the edge as:
P ij ¼ P j
/ðP iÞ

/ðP iÞ � /ðP jÞ
� P i

/ðP jÞ
/ðP iÞ � /ðP jÞ

:

Then S \ C and S \ X� are polytopes whose vertices are given by:
S \ C � convðfP ijj/ðP iÞ/ðP jÞ < 0gÞ;

and
S \ X� � convðfP ijj/ðP iÞ/ðP jÞ < 0g [ fP ij/ðP iÞ < 0gÞ;

as illustrated in Figs. 2–4.

Integration over such discretizations of S \ C or S \ X� can still be complicated since the area or volume
computations of polytopes are in general not straightforward. For this reason, if the sets S \ f/ ¼ 0g or
S \ f/ 6 0g are not simplices, we further divide them into simplices as described next: Using the values of
/ at the vertices of S, we linearly interpolate / inside S, thus C and X� are geometrically hyperplane and half-
space, respectively. First note that two geometric configurations given by the intersection between a simplex S



Fig. 2. Representation of the set S \ C when dimðSÞ ¼ 2 (left) and dimðSÞ ¼ 3 (center and right), which is approximated by
convðfP ijj/ðP iÞ/ðP jÞ < 0gÞ, where the P ijs are found by linear interpolations of /. The left figure represents the generic case in two spatial
dimensions and the right two figures represent the generic cases in three spatial dimensions.

Fig. 3. The two generic representations of the set S \ X� in two spatial dimensions: One triangle (left) or the union of two triangles (right).

Fig. 4. The three generic representations of the set S \ X� in three spatial dimensions: One tetrahedron (left) or the union of three
tetrahedra (center and right).
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and a hyperplane C are equivalent if they have the same number of vertices below and above the hyperplane C,
as noted in [18]. Likewise, two geometric configurations given by the intersection between a simplex S and a
halfspace X� are equivalent if they have the same number of vertices below and above the hyperplane C. Obvi-
ously, since the sum of the number of vertices below the hyperplane and the number of vertices above the
hyperplane equals the total number of vertices of S, it is enough to know the number of vertices below the
hyperplane to classify all the possible geometric configurations. We define this number by
gð/; SÞ :¼ nðfP ij/ðP iÞ < 0gÞ:

In two spatial dimensions, the possible values of gð/; SÞ are 0, 1, 2, and 3. When gð/; SÞ ¼ 0 or 3, / is posi-

tive or negative, therefore S \ C ¼ ;. The case of gð/; SÞ ¼ 2 can be treated in the same fashion as the case
gð/; SÞ ¼ 1 by simply negating / (since S \ f/ ¼ 0g ¼ S \ f�/ ¼ 0g). When gð/; SÞ ¼ 1, S \ C is a line
segment as illustrated in Fig. 2 (left) and Table 1 summarizes the different cases. We characterize the decom-
position of S \ X� in the same way: When gð/; SÞ ¼ 0, / is positive, therefore S \ X� ¼ ;. When gð/; SÞ ¼ 3,
/ is negative and S \ X� ¼ S. Fig. 3 illustrates the decompositions when gð/; SÞ ¼ 1 (left) and gð/; SÞ ¼ 2
(right). Table 3 summarizes the different cases.



Table 1
Generic case for representing S \ C in two spatial dimensions

/ðP 0Þ /ðP 1Þ /ðP 2Þ Q0 Q1

� + + P01 P02

Q0 and Q1 are the vertices of a line segment as depicted in Fig. 2 (left).

Table 2
The two generic cases for representing S \ C in three spatial dimensions

/ðP 0Þ /ðP 1Þ /ðP 2Þ /ðP 3Þ Q0 Q1 Q2

� + + + P01 P02 P03

� � + + P02 P03 P13

P02 P12 P13

Q0, Q1, and Q2 are the vertices of a triangle as depicted in Fig. 2 (center and right).

Table 3
The two generic cases for representing S \ X� in two spatial dimensions

/ðP 0Þ /ðP 1Þ /ðP 2Þ Q0 Q1 Q2

� + + P0 P01 P02

� � + P0 P1 P02

P1 P12 P02

Q0, Q1, and Q2 are the vertices of a triangle as depicted in Fig. 3.
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In three spatial dimensions, the possible values of gð/; SÞ are 0, 1, 2, 3, and 4. When gð/; SÞ ¼ 0 (resp.
gð/; SÞ ¼ 4), / is positive (resp. negative) and S \ C ¼ ;. The case gð/; SÞ ¼ 3 can be treated in the same fash-
ion as the case gð/; SÞ ¼ 1 by negating /. When gð/; SÞ ¼ 1 and gð/; SÞ ¼ 2, the decomposition of S \ C is
illustrated in Fig. 2 (center and right) and Table 2 summarizes the different cases. Likewise, we characterize
the decomposition of S \ X�: When gð/; SÞ ¼ 0, / is positive, therefore S \ X� ¼ ;. When gð/; SÞ ¼ 4, / is
negative, therefore S \ X� ¼ S. Fig. 4 illustrates the decompositions when gð/; SÞ ¼ 1 (left), gð/; SÞ ¼ 2 (cen-
ter) and gð/; SÞ ¼ 3 (right), and Table 4 summarizes the different cases.

We now denote the decompositions of S \ C and S \ f/ 6 0g by Secð/; SÞ and Fruð/; SÞ, respectively:
Table
The th

/ðP 0Þ
�
�

�

Q0, Q1
S \ C ¼
[

S02Secð/;SÞ
S0;

S \ X� ¼
[

S02Fruð/;SÞ
S0:
4
ree generic cases for representing S \ X� in three spatial dimensions

/ðP 1Þ /ðP 2Þ /ðP 3Þ Q0 Q1 Q2 Q3

+ + + P0 P01 P02 P03

� + + P0 P1 P02 P13

P12 P1 P02 P13

P0 P03 P02 P13

� � + P0 P1 P2 P13

P0 P03 P2 P13

P23 P03 P2 P13

, Q2, and Q3 are the vertices of a tetrahedron, as depicted in Fig. 4.
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Using these decompositions, the integrals over C and f/ 6 0g are defined as the sum of integrals over
simplices:
Z

C
f dC ¼

X
C:grid cell

X
S2T ðCÞ

Z
S\C

f dC ¼
X

C:grid cell

X
S2T ðCÞ

X
S02Secð/;SÞ

Z
S0

f dC;

Z
X�

f dX ¼
X

C:grid cell

X
S2T ðCÞ

Z
S\X�

f dX ¼
X

C:grid cell

X
S2T ðCÞ

X
S02Fruð/;SÞ

Z
S0

f dX:
2.3. Numerical integration on a simplex

The integral of a function f over a simplex S with vertices P 0; . . . ; P n can be approximated by the following
second-order midpoint rule [4]:
Z

S
f dx ¼ volðSÞ � f ðP 0Þ þ � � � þ f ðP nÞ

nþ 1
:

We note that there exist higher order accurate quadrature rules to approximate integrals [4,5], but in our work
the use of linear interpolation for / limits the accuracy to second-order and therefore approximating the inte-
gral by the second-order midpoint rule is sufficient. The volume of the simplex is given by
volðSÞ ¼ 1

n!
det

ðP 1 � P 0Þe1 � � � ðP n � P 0Þe1

..

. ..
.

ðP 1 � P 0Þen � � � ðP n � P 0Þen

0
BB@

1
CCA

��������

��������
;

where ei represents the ith canonical unit basis vector.

Remarks

� In the case where / = 0 on an edge, the summation over the adjacent grid cell will duplicate the integral on
the edge. Therefore, we exclude this case by simply perturbing /. In the example section we use � ¼ 10�20,
and let
/ijk ¼
� if j/ijkj < � and /ijk > 0

�� if j/ijkj < � and /ijk 6 0:

(

� In the case where all the vertices of a cell C belongs to X� in the calculation of
R

C\X� f ðxÞ dX, the triangu-
lation procedure is not necessary. By the standard second-order mid-point rule, the integration is approx-
imated as the product of the volume of the cell and the average of f at the vertices of the cell.
3. Extension to quadtree and octree data structures

This approach can be trivially extended to unstructured Cartesian meshes since the algorithm is based on
integrating over a grid cell, with no dependence from one cell to others. For the sake of efficiency, it is desir-
able to utilize data structures that reduce the total amount of cells to be used, since only those adjacent to the
set C contribute to the integration of

R
C f dC. In this section, we describe a simple implementation using quad-

tree and octree data structures.

3.1. Quadtree/octree data structures

Quadtree (resp. octree) data structures can be used to represent the spatial discretization of a physical
domain in two (resp. three) spatial dimensions as depicted in Fig. 5: Initially the root of the tree is associated



Fig. 5. Discretization of a two-dimensional domain (left) and its quadtree representation (right). The entire domain corresponds to the
root of the tree (level 0). Then each cell can be recursively subdivided further into four children. In this example, the tree is ungraded since
the difference of level between cells exceeds one.
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with the entire domain, then we recursively split each cell into four children until the desired level of detail is
achieved. This is done similarly in three spatial dimensions, except that cells are split into eight children. We
refer the reader to the books of Samet [16,15] for more details on quadtree/octree data structures.

3.2. Constructing quadtrees/octrees from implicit representation of the domains

Since the accuracy of the method depends on the size of the cells adjacent to the interface, we impose that
the finest cells lie on the interface. This can be achieved by using the signed distance function to the interface
along with the Whitney decomposition, as first proposed by Strain in [19]. Simply stated, one ‘‘splits any cell

whose edge length exceeds its distance to the interface’’. For a general function / : Rn ! R with Lipschitz con-
stant Lipð/Þ, the Whitney decomposition was extended in Min [10]: Starting from a root cell, split any cell C if
max
v2verticesðCÞ

j/ðvÞj 6 1

2
� Lipð/Þ � diag-sizeðCÞ;
where diag-size(C) refers to the length of the diagonal of the current cell C and v refers to a vertex (node) of the
current cell. We note that a signed distance function can be obtained from a given level-set function / by using
the so-called reinitialization equation, introduced for uniform grids by Sussman et al. [20] (see also Russo and
Smereka [13]) and extended to unstructure grids in Min and Gibou [9].

Remarks

� The complexity of this approach scales with the dimension of the interface, i.e. OðnÞ in two spatial dimen-
sions and Oðn2Þ in three spatial dimensions. In addition, since the isosurfacing is table-based, the compu-
tational time to evaluate the integral is similar to that using the delta formulation of [17].
� The reinitialization of the level-set function is only used in the construction of the octree grids. The com-

putation of the integral itself only requires a continuous level-set function.
4. Examples

In this section, we demonstrate that our approach produces robust, second-order accurate results in two
and three spatial dimensions. All the examples were computed on a PC with 2.2 GHz CPU and 2 GB memory.

4.1. Robustness to grid perturbations in 2D

Consider an ellipse represented as the zero level set of /ðx; yÞ ¼ x2

1:52 þ y2

:752 � 1. Its exact arc-length is given as
’ 7:266336165 [17]. Table 5 shows that the proposed scheme is second-order accurate and produces results
that are stable in the case where the interface is randomly shifted on the grid. The robustness is demonstrated
by the fact that the ratios of the maximum error over the minimum error (over all trials) in Table 5 are close to



Table 5
Statistics of 50 trials for computing the arc-length of an ellipse for Example 4.1

Dx Average Order SD Min Order Max Order max
min

Geometric numerical integration

.2 5.04E�3 2.15E�4 4.63E�3 5.49E�3 1.19

.1 1.26E�3 2.00 3.23E�5 1.17E�3 1.99 1.30E�3 2.08 1.11

.05 3.14E�4 2.00 6.61E�6 3.03E�4 1.95 3.26E�4 2.00 1.08

.025 7.84E�5 2.00 1.25E�6 7.50E�5 2.02 7.99E�5 2.03 1.07

.0125 1.96E�5 2.00 2.15E�7 1.90E�5 1.98 1.99E�5 2.01 1.04

.00625 4.90E�6 2.00 3.18E�8 4.83E�6 1.98 4.94E�6 2.01 1.02

First-order delta function approach [17]
.2 8.96E�3 7.39E�3 1.28E�4 2.67E�2 208
.1 2.70E�3 1.73 2.96E�3 9.13E�5 1.31 1.07E�2 0.49 118
.05 9.55E�4 1.50 1.12E�3 4.19E�7 1.28 4.43E�3 7.77 10600
.025 3.21E�4 1.57 3.58E�4 7.32E�6 1.54 1.52E�3 -4.12 208
.0125 1.13E�4 1.51 1.22E�4 9.15E�6 1.53 5.28E�4 -0.32 57.7
.00625 3.94E�5 1.52 4.17E�5 2.01E�6 1.52 1.84E�4 2.19 91.7

Second-order delta function approach [17]
.2 3.23E�3 2.74E�3 6.07E�4 1.30E�2 21.5
.1 5.74E�4 2.49 5.25E�4 2.93E�6 7.69 3.02E�3 2.10 1030
.05 1.13E�4 2.34 4.08E�5 2.55E�5 3.12 2.04E�4 3.88 8.01
.025 3.08E�5 1.87 8.31E�6 1.56E�5 0.70 4.72E�5 2.11 3.00
.0125 7.61E�6 2.01 1.51E�6 1.37E�6 3.50 1.21E�5 1.96 8.82
.00625 1.89E�6 2.01 1.82E�7 1.61E�6 0.23 2.21E�6 2.45 1.37

Top: Geometric approach. Middle and bottom: The first- and second-order accurate delta formulation approaches of [17].

Table 6
Convergence rate for computing the arc-length of an ellipse for Example 4.1 for one trial

Dx Geometric integral Order First-order delta Order Second-order delta Order

0.2 5.49E�3 3.94E�3 8.22E�4
0.1 1.24E�3 2.13 9.03E�3 �1.19 1.15E�2 �3.80
0.05 3.03E�4 2.03 4.42E�3 1.02 4.99E�3 1.20
0.025 7.49E�5 2.01 1.52E�3 1.54 1.41E�3 1.82
0.0125 1.90E�5 1.97 5.28E�4 1.52 3.66E�4 1.94

Comparison of the geometric approach with the first- and second-order accurate delta formulation approaches of [17].
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one. We compare our results with those obtained with the first-order delta formulation of [17]. In this case, the
ratios of the maximum error over the minimum error can be large for some configurations (see Table 5), indi-
cating a dependence on the interface location on the grid. We also compare our results to the second-order
delta formulation of [17]. In this case the integration is much less sensitive to the interface location on the grid,
as shown in Table 5. Table 6 shows the results of the three approaches over one trial.

We point out that the second-order accurate formulation of [17] reduces to the first-order formulation in
the case where the interface is aligned with the Cartesian directions so that second-order accuracy is not
Table 7
Relative errors on computing the area of an ellipse for Example 4.1

Dx Geometric integral Order

.2 1.59E�2

.1 3.76E�3 2.08

.05 9.46E�4 1.99

.025 2.25E�4 2.07

.0125 5.78E�5 1.97

.00625 1.46E�5 1.99
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always possible. We also note that the geometric approach depends only on the continuity of the level func-
tion, while the first- and second-order delta formulations depends on the first- and second-order differentia-
bility of the level function, respectively. In the case where the level function is not guaranteed to be
smooth, the geometric approach may be advantageous.

Table 7 illustrates the second-order accuracy of our method for the computation of the area of an ellipse.

4.2. Robustness to grid perturbations in 3D

Consider an ellipsoid represented as the zero level set of /ðx; y; zÞ ¼ x2

1:52 þ y2

:752 þ z2

:52 � 1. Its exact surface area
is given as ’ 9:901821 (see [17]). Table 8 demonstrates that the proposed scheme is second-order accurate and
compares our results to those obtained in [17]. In both cases the interface location is shifted randomly. Our
method is robust as it is the case in two spatial dimensions. In the case of the delta formulation of [17], the
first-order accurate approximation produces robust results that are close to second-order accurate and com-
parable to ours, while the second-order accurate approximation is less robust (see Table 8).

Table 9 demonstrate second-order accuracy of our approach for computing the volume of the ellipsoid.

4.3. Surface integral on a torus

Consider a torus T described by the zero level set of /ðx; y; zÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 2Þ2 þ z2 � 1. We compute the

surface integral
R

T x2 dS ¼ 22p2 on the torus. Fig. 6 (left) illustrate the geometry of the surface and Table 10
demonstrates the second-order accuracy of our method.
Table 8
Statistics of 50 trials for computing the surface area of an ellipsoid for Example 4.2

Dx Average Order SD Min Order Max Order max
min

Geometric numerical integration

.2 3.17E�2 2.90E�4 3.12E�2 3.22E�2 1.03

.1 7.91E�3 1.98 1.02E�5 7.89E�3 1.98 7.94E�3 2.02 1.00

.05 1.98E�3 2.00 6.81E�7 1.98E�3 2.00 1.98E�3 2.00 1.00

.025 4.94E�4 2.00 1.13E�7 4.94E�4 2.00 4.95E�4 2.00 1.00

First-order delta function approach [17]
.2 3.03E�2 7.12E�3 1.75E�2 4.73E�2 1.49
.1 7.77E�3 1.96 2.26E�3 3.95E�3 2.14 1.32E�3 1.84 1.51
.05 2.12E�3 1.87 7.36E�4 6.39E�4 2.62 4.48E�3 1.56 2.16
.025 5.20E�4 2.03 1.36E�4 3.41E�4 0.91 8.51E�4 2.39 1.54

Second-order delta function approach [17]
.2 6.86E�2 7.60E�2 1.01E�2 4.46E�1 44.4
.1 1.33E�2 2.37 8.38E�3 9.47E�4 3.41 2.91E�2 3.93 3.08
.05 2.60E�3 2.35 2.11E�3 2.49E�4 1.92 1.06E�2 1.45 42.4
.025 8.00E�4 1.70 1.01E�3 4.40E�6 5.82 6.88E�3 0.62 1570

Top: Geometric approach. Middle and bottom: The first- and second-order accurate delta formulation approaches of [17].

Table 9
Relative errors on computing the volume of an ellipsoid for Example 4.2

Dx Geometric integral Order

.1 1.36E�2

.05 3.40E�3 2.00

.025 8.50E�4 2.00

.0125 2.12E�4 2.00

.00625 5.31E�5 2.00



Fig. 6. Torus used in Example 4.3 (left) and genus two surface (right) used in Example 4.4.
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4.4. Surface integral on a surface of genus two

Consider a surface represented by the zero level set of /ðx; y; zÞ ¼ ðð1:2� x2Þx2 � y2Þ2 þ z2 � :1. According
to the Gauss–Bonet theorem, the surface integral of the Gaussian curvature jG is �4p, since the surface has
genus two, i.e. two handles as shown in Fig. 6 (right). The Gaussian curvature can be calculated from the level
function as:
Table
Relativ

Dx

.2

.1

.05

.025

.0125

Table
Relativ

Dx

.1

.05

.025

.0125

.00625
jG ¼

ð/2
xð/yy/zz � /2

yzÞ þ 2/y/zð/xy/zx � /yz/xxÞ
þ/2

yð/xx/zz � /2
xzÞ þ 2/x/zð/xy/yz � /xz/yyÞ

þ/2
z ð/xx/yy � /2

xyÞ þ 2/x/yð/yz/zx � /xy/zzÞÞ
ð/2

x þ /2
y þ /2

z Þ
2

:

In this example, all the derivatives are approximated with the standard central finite differences. Table 11 dem-
onstrates the second-order accuracy of our method.

4.5. Surface integral using octrees

Consider a surface, called orthocircles, represented as the zero contour of the level-set function:
/ðx; y; zÞ ¼ ððx2 þ y2 � 1Þ2 þ z2Þððy2 þ z2 � 1Þ2 þ x2Þððz2 þ x2 � 1Þ2 þ y2Þ � :0752ð1þ 3ðx2 þ y2 þ z2ÞÞ:
10
e errors on computing the surface integral for Example 4.3

Geometric integral Order

7.08E�3
1.78E�3 1.99
4.49E�4 1.99
1.12E�4 1.99
2.85E�5 2.00

11
e errors on computing the surface integral for Example 4.4

Geometric integral Order

1.96E�1
6.38E�2 1.62
1.65E�2 1.95
4.11E�3 2.01
1.03E�3 1.99



Fig. 7. Three-dimensional object (orthocircles) with genus 7 used in Example 4.5. Left: Octree representation of the interface
demonstrating that the smallest cells are placed around the interface. Right: A different view of the same surface.

Table 12
Genus calculation for Example 4.5

Finest resolution Dx Number of nodes Order Relative error Order Genus Order

643 .05 45,113 2.22-1 8.337614
1283 .025 206,241 2.19 4.95-2 2.17 7.297007 2.19
2563 .0125 834,557 2.02 1.23-2 2.00 7.074171 2.01
5123 .00625 3,372,753 2.01 3.08-3 2.00 7.018503 2.01

10243 .003125 13,546,163 2.00 7.69-4 2.00 7.004615 2.01
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This surface is topologically equivalent to a surface with seven holes. We compute the surface integral of the
Gaussian curvature as in the previous example but we use the octree data structure described in Section 3.
Fig. 7 depicts the geometrical shape and the octree representation. From the surface integral of the Gaussian
curvature, we derive the genus number g of the surface by the Gauss–Bonne theorem:

R
C jG dx ¼ 4pð1� gÞ.

Table 12 demonstrate the second-order accuracy of our method. Note that the number of nodes grows qua-
dratically, since the octree data structure put most resource near the interface. The number of nodes for a
10243 uniform grid is about 80 times more than for the octree data structure used in this example, which pro-
duces the same effective resolution.

5. Conclusion

We have presented a geometric approach for calculating integrals over irregular domains described by a
level-set function. This procedure can be used to evaluate integrals over a lower dimensional interface and
may be used to evaluate the contribution of singular source terms. This approach produces results that are
second-order accurate and robust to the perturbation of the interface location on the grid. Moreover, since
we use a cell-wise approach, this procedure can be easily extended to quadtree and octree grids. We demon-
strate the second-order accuracy and the robustness of the method in two and three spatial dimensions and
compared with the first- and second-order accurate discretizations of the delta function formulation of [17].
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